Abstract

Nitrogen monoxide (NO) plays a role in the cytotoxic mechanisms of activated macrophages against tumor cells by inducing iron (Fe) release. We have shown that NO-mediated Fe efflux from cells required glutathione (GSH), and we have hypothesized that a GS-Fe-NO complex was released. Hence, we studied the role of the GSH-conjugate transporter multidrug resistance-associated protein 1 (MRP1) in NO-mediated Fe efflux. MCF7-VP cells overexpressing MRP1 exhibited a 3- to 4-fold increase in NO-mediated 59Fe and GSH efflux compared with WT cells (MCF7-WT) over 4 h. Similar results were found for other MRP1-overexpressing cell types but not those expressing another drug efflux pump, P-glycoprotein. NO-mediated 59Fe and GSH efflux were temperature- and energy-dependent and were significantly decreased by the GSH-depleting agent and MRP1 transport inhibitor L-buthionine-[S,R]-sulfoximine. Other MRP1 inhibitors, MK571, probenecid, and difloxacin, significantly inhibited NO-mediated 59Fe release. EPR spectroscopy demonstrated the dinitrosyl-dithiol-Fe complex (DNIC) peak in NO-treated cells was increased by MRP1 inhibitors, indicating inhibited DNIC transport from cells. The extent of DNIC accumulation correlated with the ability of MRP1 inhibitors to prevent NO-mediated 59Fe efflux. MCF7-VP cells were more sensitive than MCF7-WT cells to growth inhibition by effects of NO, which was potentiated by L-buthionine-[S,R]-sulfoximine. These data indicate the importance of GSH in NO-mediated inhibition of proliferation. Collectively, NO stimulates Fe and GSH efflux from cells via MRP1. Active transport of NO by MRP1 overcomes diffusion that is inefficient and nontargeted, which has broad ramifications for understanding NO biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.