Abstract

The incorporation of electronegative elemental nitrogen into zero-valent iron (ZVI)/sulfidated zero-valent iron (S-ZVI) has emerged as an outstanding and promising way to improve decontamination performance. However, the impact of nitrogen modification on the electrical structure of ZVI/S-ZVI remains unclear. Herein, nitrogen-modified sulfidated zero-valent iron (S-N-ZVI) was successfully obtained utilizing cheap and accessible ammonium chloride as the nitrogen source. Raman spectra, FTIR, and density functional theory (DFT) calculations demonstrated that NH3 acts as the dominant nitrogen species. According to the projected density of states and charge-density difference calculations, N is successfully bound to Fe, resulting in a redistribution of surface charge and an increase in electron density of S-N-ZVI, which is reflected in the improved conductivity of S-N-ZVI. Compared with S-ZVI, S-N-ZVI demonstrates better performance in terms of Cr(VI) removal kinetics (kobs improved by 2.075 folds), resistance to air aging, reusability and ability to preserve FeSX stability. This study highlights that the electronic structure significantly impacts the physicochemical properties of S-ZVI and reveals the mechanism of nitrogen modification on the electronic structure of S-ZVI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.