Abstract

Nitrogen has a vital influence on the properties of the microwave-assisted hydrothermal carbonization (MHTC) products of Spirulina platensis (SP). The effects of hydrothermal temperature (140–220 °C) and time (1–4 h) on the product distribution and nitrogen migration of SP in MHTC were studied. Increasing temperature led to an increase in the carbon content, and a decrease in the nitrogen content in hydrochar. Protein-N was the major nitrogen-containing species in hydrochar. The total nitrogen in liquid phase increased significantly with increasing temperature. Carbon dots were found to be one of the valuable products in the liquid phase. Higher temperatures improved the amine-N level and reduced the quaternary-N content in carbon dots. A close correspondence was found between the N-containing species and the luminescence centers of carbon dots. A possible nitrogen migration mechanism was proposed to provide guidance for the potential application of the products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.