Abstract

Sediment re-suspension plays a crucial role in releasing endogenous nitrogen and greenhouse gases in shallow urban waters. However, the impacts of repeated re-suspension and photo-induced processes on migration and transformation from endogenous nitrogen, as well as the emission of greenhouse gases, remain unclear. This study simulated three conditions: re-suspension (Rs), re-suspension combined with ultravioletirradiation (Rs + UV), and ultraviolet irradiation (UV). The findings revealed that both repeated sediment re-suspension and exposure to UV light altered the characteristics of surface sediments. Decrease of convertible nitrogen in sediments, leading to the release of ion-exchangeable nitrogen (IEF-N) into NH4+-N and NO3--N, influenced greenhouse gas production differently under various conditions. The study observed the highest concentration of dissolved N2O in under UV irradiation, positively correlated with NO2--N and NO3--N. Re-suspension increased the turbidity of the overlying water and accelerated nitrification, resulting in the highest NO3--N concentration and the lowest dissolved N2O concentration. Additionally, in the Rs + UV dissolved N2O maintained the higher concentrations than in Rs, with greatest amount of N conversion in surface sediments, and a 59.45% reduction in IEF-N. The production of N2O during re-suspension was mainly positively correlated with NH4+-N in the overlying water. Therefore, this study suggest that repeated re-suspension and light exposure significantly influence nitrogen migration and transformation processes in sediment, providing a theoretical explanation for the eutrophication of water and greenhouse gas emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call