Abstract

Key enzyme activities related to nitrogen metabolism, gas-exchange, chlorophyll fluorescence, and lipid peroxidation were determined in Leymus chinensis (Trin.) Tzvel. plants under four soil moisture regimes (control: 75%–80% of field moisture capacity, mild drought: 60%–65%, and moderate drought: 50%–55% as well as severe drought: 35%–40%). Severe drought significantly decreased the key enzyme activities of nitrogen anabolism such as nitrate reductase (NR, EC 1.6.6.1), glutamine synthetase (GS, EC 6.3.1.2), and glutamate dehydrogenase (GDH, EC 1.4.1.2) but increased the key enzyme activities of nitrogen catabolism such as asparaginase (AS, EC 6.3.5.4) and endopeptidase (EP, EC 3.4.24.11), especially after long-term soil drought. Plant biomass, leaf-biomass ratio between the green leaf and total plant biomass, net photosynthetic rate, stomatal conductance, the maximal efficiency of PSII photochemistry, the actual quantum yield, and the photochemical quenching were significantly reduced by severe water stress. Plant malondialdehyde (MDA) concentration increased with the increase in water stress, particularly at the late-growth stage. Our results suggest that the key enzymes of nitrogen metabolism may play an important role in the photosynthetic acclimation of L. chinensis plants to long-term soil drought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.