Abstract
Surface residues and standing stubble protect soil against erosion and mitigate against crop water deficits by conserving additional moisture. However, residues and stubble can also present a dilemma for producers practising no-till in terms of nitrogen (N) fertilizer management and row spacing. The objective of this research was to determine how row spacing, N management using urea and two rates of post-emergent herbicide (66 and 100% of recommended) affect spring wheat establishment and plant development. The study was conducted using a no-till system and a canola-springwheat cropping system at three locations over a 3-yr period. The N management and row spacing treatments were (1) 23-cm row spacing with fall banded N on 30 cm; (2) 23-cm row spacing with spring banded N on 30 cm; (3) 30-cm row spacing with the N side-banded; (4) 23-cm row spacing with the N side-banded; and (5) sweep on 23-cm spacing with seed and fertilizer scattered over a 20-cm width. Herbicide rates did not affect wheat development. Planting depth was greater for the sweep treatment, but only by 6 mm. Plant densities were at the low end of the optimal range of 200–250 plants m-2 for all treatments and were least for the 30 cm row spacing. Average frequencies for tillers T0, T1, T2 and T3 were 20, 81 61 and 10%, respectively. Fall and spring band treatments resulted in lower tiller frequencies than the sweep treatment, with intermediate levels for the side-band treatments. Tiller frequencies were identical between the 23-cm and 30-cm row spacings with N side-banded. Greater tiller frequencies for the sweep treatment likely resulted from the greater spread of seed, reducing inter-plant competition and closer proximity of the seed to fertilizer N. Spike density was not affected by N management. Expected spike density, calculated from tiller frequency and plant density data, was within 1% of the actual spikes recorded, when averaged over treatments. This means that tiller frequencies at the 5 to 5.5 leaf stage are a good predictor of expected spike density. Wider row spacings did not affect plant and tiller development but applying N fertilizer at time of seeding provided better spring wheat tiller development. Key words: Triticum aestivum L., nitrogen management, tiller development
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.