Abstract
This study investigated the nitrogen transformation rates of different nitrogen-loading (20, 30, and 50 mg TN/L) biochar packed reactors (C:N:P = 100:5:1) within 125 days at 5 °C. The results showed that high nitrogen loading resulted in an NH4+ (TN) removal efficiency decline from 98% (57%) to 83% (29%), with biochar yielding a higher NH4+, TN and DON removal rate than conventional activated sludge. Moreover, all biochar packed reactors realized a quick start-up by dropping in temperature stage by stage, and the effluent dissolved organic nitrogen (DON) concentrations of R20, R30, and R50 were 0.44 ± 0.18, 0.85 ± 0.35, and 0.66 ± 0.26 mg/L, respectively. The nirS/amoA, nxrA/amoA, and amoA/(narG + napA) were deemed to be the markers of ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR), respectively. Compared with functional gene quantity data, transcription data (mRNA) introduced into stepwise regression analyses agreed well with nitrogen transformation rates. High nitrogen loading also resulted in the cell viability decreased in R50. Nitrogen loadings and operation time both led to a significant variation in cell membrane composition, and unsaturated fatty acids (UFAs) significantly increased in R30 (46.49%) and R50 (36.34%). High-throughput sequencing revealed that nitrogen loadings increased the abundance of nitrifying bacteria (e.g., Nitrospira) and reduced the abundance of denitrifying bacteria (e.g., Nakamurella, Thermomonas, and Zoogloea) through linear discriminant analysis (LDA).
Highlights
Limited by the volume and high heat capacity of domestic wastewater, many wastewater treatment plants (WWTPs) with special regional climate and seasonal conditions face nitrogen removal problem at low temperatures[1]
Under low nitrogen loading conditions (
Inadequate biofilm denitrification ability contributed to NO3− accumulation and the unsatisfactory TN removal rate of R30 and R50, which was reported in an activated sludge system (25% TN removal rate at 10–15 °C) at low temperatures[21,22]
Summary
Limited by the volume and high heat capacity of domestic wastewater, many wastewater treatment plants (WWTPs) with special regional climate and seasonal conditions face nitrogen removal problem at low temperatures[1]. The biofilm process is widely recognized to have an excellent nitrification and denitrification capacity (>51% nitrogen removal efficiency) at low temperatures (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.