Abstract

Macronutrient limitation and increased solar exposure coincide with ocean warming-enhanced stratification, with consequences for phytoplankton within the upper mixing layer. In this study, we grew a diatom, Thalassiosira punctigera, under nitrogen-limited and replete conditions for more than 14 generations and investigated both the biochemical composition of treated cells and their photochemical responses to high light and UV exposure. The photosynthetic pigment and the particulate organic nitrogen (PON) content significantly decreased in the low nitrate grown cells, with drastic decline of the absorption of UV absorbing compounds. Under an acute exposure to high light or UV radiation, we observed a significant decline in the photochemical yield along with an increase of nonphotosynthetic quenching (NPQ), with the former lowered and the latter raised in the low-nitrogen grown cells. The results reveal a decreased repair rate and enhanced photoinhibition of the diatom under nitrogen limitation when exposed to increased levels of light and UV radiation, suggesting a higher vulnerability of the diatom phytoplankton under influences of oceanic global change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.