Abstract

Nitrogen (N) fertilization can improve the phytoremediation of contaminated soils. However, limited information is available on the effects and mechanisms of N availability on Cadmium (Cd) phytoextraction by dioecious plants. This study employed female and male Populus cathayana to examine sex-specific long-distance transport and cell wall Cd sequestration. Females had a greater ability to transport Cd from roots to shoots and accumulated more Cd in leaves, but had less Cd bound to the cell wall and S-containing ligands than males, irrespective of N availability. N availability affected the sex-specific ability to transport Cd and chelate it within cell walls and with S-containing ligands. Low N promoted phloem-mediated upward and downward Cd transport and total Cd accumulation in both sexes, and such effects on phloem-mediated downward Cd transport were greater than those on upward Cd transport in males. However, low-N concentration-induced Cd phloem transport was more significant in females than males. In females, low N reduced Cd accumulation in leaves via increased phloem-mediated Cd downward transport, and this Cd was subsequently sequestered in the bark and root cell walls. In contrast, for males, high N promoted xylem-mediated Cd transport to shoots and Cd sequestration in the bark but reduced phloem-mediated Cd downward transport and subsequent sequestration in root cell walls. Sex-specific genes related to root Cd transport and translocation from roots to shoots were also affected by N supply in roots. These results suggested that N availability reduced the sex-based difference in total Cd accumulation, translocation and Cd detoxification, and males showed stronger Cd tolerance than females at both N availabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.