Abstract

Two types of mechanisms for the enzymatic reduction of NO2- to N2O have been proposed. In one, two NO2- ions are reduced in parallel, with the nitrogen-nitrogen bond formed from reduced intermediates. In the second, the two NO2- ions enter the reaction sequentially, with the nitrogen of at least one of the two having a valence of 3+ when the nitrogen-nitrogen bond is formed. Our objective was to distinguish between these two types of mechanism. Toward that end, the exchange of 18O from H2O to NO2- and the overall nitrogen isotopic fractionation factor (beta obs) were measured. The rate of exchange of oxygen from H2O to NO2-, resulting from a protonation-dehydration step preceding reductive events in both mechanisms, was less than 10% of the rate of denitrification at both low and high [NO2-]. The value of beta obs was 1.010 +/- 0.001 and 1.020 +/- 0.001 at low and high [NO2-], respectively. Expressions for beta obs, as a function of the measured rate of entry of oxygen from H2O into NO2-, were derived for both types of mechanism. The measured dependence of beta obs on substrate concentration, as constrained by the 18O exchange data, is inconsistent with the first type of mechanism, but consistent with the second type. Thus, by combining nitrogen isotopic fractionation and 18O exchange data, we rule out any mechanism in Pseudomonas stutzeri in which NO2- ions are reduced in parallel, with the nitrogen-nitrogen bond being formed from reduced intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.