Abstract
Diamond and Silicon Carbide (SiC) are promising wide band-gap semiconductors for power electronics, SiC being more mature especially in term of large wafer size (200 mm). Nitrogen impurities are often used in both materials for different purpose: increase the diamond growth rate or induce n-type conductivity in SiC. The determination of the nitrogen content by secondary ion mass spectrometry (SIMS) is a difficult task mainly because nitrogen is an atmospheric element for which direct monitoring of N± ions give no or a weak signal. With our standard diamond SIMS conditions, we investigate 12C14N- secondary ions under cesium primary ions by applying high mass resolution settings. Nitrogen depth-profiling of diamond and SiC (multi-) layers is then possible over several micrometer thick over reasonable time analysis duration. In a simple way and without notably modifying our usual analysis process, we found a nitrogen detection limit of 2x1017 at/cm3 in diamond and 5x1015 at/cm3 in SiC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.