Abstract

First-principles calculations have been used to comparatively investigate electronic and magnetic properties of nitrogen-doped (N-doped) nonmagnetic semiconductor perovskite-type stannate (MSnO3, M = Ca, Sr, Ba). A total magnetic moment of 1.0 [Formula: see text] induced by N is found in MSnO3 supercell with one N dopant. The spontaneous polarization mainly originates from spin splitting on [Formula: see text] state of N. The medium-sized formation energy shows that the N-doped MSnO3 can be realized experimentally under the metal-rich environments, but the clustering tendency and short-range coupling imply that the stannate matrices are unsuitable for magnetizing by substituting N for O. Our study offers a fresh sight of spontaneous spin polarization in [Formula: see text] magnetism. The FM coupling in N-doped MSnO3 should be attributed to the hole-mediated [Formula: see text]–[Formula: see text] coupling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.