Abstract

Due to their complementary roles in meeting plant nutritional needs, arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (N(2)-fixers) may have synergistic effects on plant communities. Using greenhouse microcosms, we tested the effects of AMF, N(2)-fixers (symbiotic: rhizobia, and associative: Azospirillum brasilense), and their potential interactions on the productivity, diversity, and species composition of diverse tallgrass prairie communities and on the productivity of Panicum virgatum in monoculture. Our results demonstrate the importance of AMF and N(2)-fixers as drivers of plant community structure and function. In the communities, we found a positive effect of AMF on diversity and productivity, but a negative effect of N(2)-fixers on productivity. Both AMF and N(2)-fixers affected relative abundances of species. AMF shifted the communities from dominance by Elymus canadensis to Sorghastrum nutans, and seven other species increased in abundance with AMF, accounting for the increased diversity. N(2)-fixers led to increases in Astragalus canadensis and Desmanthus illinoense, two legumes that likely benefited from the presence of the appropriate rhizobia symbionts. Sorghastrum nutans declined 44% in the presence of N(2)-fixers, with the most likely explanation being increased competition from legumes. Panicum monocultures were more productive with AMF, but showed no response to N(2)-fixers, although inference was constrained by low Azospirillum treatment effectivity. We did not find interactions between AMF and N(2)-fixers in communities or Panicum monocultures, indicating that short-term effects of these microbial functional groups are additive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call