Abstract

The ability to utilize atmospheric nitrogen (N(2)) as a sole nitrogen source is an important trait for prokaryotes. Knowledge of N(2) fixation by methanotrophs is needed to understand their role in nitrogen cycling in different environments. The verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' strain SolV was investigated for its ability to fix N(2). Physiological studies were combined with nitrogenase activity measurements and phylogenetic analysis of the nifDHK genes, encoding the subunits of the nitrogenase. 'M. fumariolicum' SolV was able to fix N(2) at low oxygen (O(2)) concentration (0.5 %, v/v) in chemostat cultures. This low oxygen concentration was also required for an optimal nitrogenase activity [47.4 nmol ethylene h(-1) (mg cell dry weight)(-1)]. Based on acetylene reduction assay and growth experiments, the nitrogenase of strain SolV seems to be extremely oxygen sensitive compared to most proteobacterial methanotrophs. The activity of the nitrogenase was not inhibited by ammonium concentrations up to 94 mM. This is believed to be the first report on the physiology of N(2) fixation within the phylum Verrucomicrobia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.