Abstract

Low soil fertility in ultramafic soils limits the efficiency of nickel phytoextraction. Developing more efficient cropping systems for agromining can be achieved by the association of a hyperaccumulator with a legume by enhancing soil fertility. However, legume crops can result sensitive to ultramafic soil conditions, including nickel Ni availability. We assessed here whether Lens culinaris is adapted to ultramafic environments by growing on soils displaying a wide range of Ni concentrations and consequently producing functional nodules. The soil was enriched with different Ni concentrations ([Ni]) (0–90mg Ni kg−1). Natural 15N abundance was used to assess N2 fixation (%Ndfa). Biotic parameters were investigated (nodule number, Ni, carbon and nitrogen concentrations, plant biomass…). Soil parameters were investigated (total [Ni], DTPA-extractable Ni, C and N concentrations…). Most of the physicochemical and biological parameters were significantly affected by the increased soil [Ni]. Nodule numbers per plant was lower under high [Ni] than control (soil without Ni). Nodules lost their capacities to fix N2 under high Ni addition (90mg Ni kg−1). For many parameters, there were no significant differences between control and treatments up to 60mg of Ni kg−1 added to the soil. Lentil is able to grow on a soil containing amounts of Ni-DTPA similar to those generally found in serpentine soils. It could be used in association with a hyperaccumulator plant as a nitrogen provider in order to optimize Ni agromining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call