Abstract

Acetylene reduction activity (ARA) and leghemoglobin (Lb) content in nodules were sigificantly reduced when pea (Pisum sativum L. cv. Lincoln) plants were subjected to 50 mM sodium chloride stress for 3 weeks. C2H2 reduction activity by bacteriods isolated from pea nodules was drastically inhibited by saline stress, and malate appeared to be a more appropriate substrate than glucose or succinate in maintaining this activity. Salt added directly to the incubation mixture of bacteriods or to the culture medium of plants inhibited O2 uptake by bacteroids. Nodule cytosolic phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and bacteriod malate dehydrogenase (MDH; EC 1.1.1.37) activities were strongly enhanced by salt stress. Under these conditions, malate concentration was depressed in bacteroids and cytosol, whereas total soluble sugar (TSS)content slightly increased in both fractions. The effect of salt stress on TSS and malate content suggests that the utilization of carbohydrate within nodules could be inhibited during salt stress. The inhibitory effect of NaCl on N2 fixation activity of bacteroids and to the decrease in bacteroid respiration. The stimulation of fermentative metabolism induced by salinity suggests some reduction in O2 availability within the nodule. Salt stress was also responsible for a decrease of the cytosolic protein content, specifically of leghemoglobin, in the nodules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call