Abstract

Nitrogen (N) fertilization is crucial for maintaining plant productivity. Clonal plants can share resources between connected ramets through clonal integration influencing microbial communities and regulating soil biogeochemical cycling, especially in the rhizosphere. However, the effect of various N fertilization practices on microbial communities in the rhizosphere of clonal ramets remain unknown. In this study, clonal fragments of Moso bamboo (Phyllostachys edulis), consisting of a parent ramet, an offspring ramet, and an interconnecting rhizome, were established in the field. NH4NO3 solution was applied to the parent, offspring ramets or rhizomes to investigate the effect of fertilization practices on the structure and function of rhizosphere microbial communities. The differences in N availability, microbial biomass and community composition, and abundance of nitrifying genes among rhizosphere soils of ramets gradually decreased during the rapid growth of Moso bamboo, irrespective of fertilization practice. The soil N availability variation, particularly in NO3−, caused by fertilization practices altered the rhizosphere microbial community. Soil N availability and stable microbial biomass N in parent fertilization were the highest, being 9.0 % and 18.7 %, as well as 60.8 % and 90.4 % higher than rhizome and offspring fertilizations, respectively. The microbial network nodes and links in rhizome fertilization were 1.8 and 7.5 times higher than in parent and offspring fertilization, respectively. However, the diversity of bacterial community and abundance of nitrifying and denitrifying genes were the highest in offspring fertilization among three practices, which may be associated with increased N loss. Collectively, the rhizosphere microbial community characteristics depended on fertilization practices by altering the clonal integration of N in Moso bamboo. Parent and rhizome fertilization were favorable for N retention in plant-soil system and resulted in more stable microbial functions than offspring fertilization. Our findings provide new insights into precision fertilization for the sustainable Moso bamboo forest management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.