Abstract

Nitrogen (N) and potassium (K) are the most required nutrients for corn and wheat production. Increasing the N application rate usually boosts crop yields. However, many uncertainties remain for K management. Potassium deficiency results in yield losses, but K application rate based on the percentage of K+ in the cation exchange capacity (CEC) is doubtful, especially in soil with high CEC. A field trial was conducted to examine the effects of KCl application before sowing corn and wheat, by raising the percentage of K+ in CEC at pH 7.0 (CECpH7.0) to approximately 2.5%, 3.5%, and 4.5%, and adding N as a topdressing (75, 150, and 225 kg ha−1 to corn and 40, 80, and 120 kg ha−1 to wheat) on the nutrition and yield of corn and wheat under a continuous no-till system (30 years). Exchangeable K+ content increased in the topsoil (0–20 cm depth) up to 7.2 mmolc dm−3 after K application at the highest rate, which, however, did not result in significant increases in nutrient uptake and yields for both corn and wheat. The N application rate positively affected the uptake and removal of all macronutrients by corn and wheat. Applying N as a topdressing increased yields of corn and wheat by up to 83% and 22%, respectively. Our results suggest that in the soil with a high CECpH7.0 (162.1 mmolc dm−3), the recommendation for K application made by considering the percentage of K+ in the CECpH7.0 may result in excessive application of K fertilizer to crops with high K-recycling potential grown under a continuous no-till system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.