Abstract
Identifying the contributions of climate factors and fertilization to maize yield is significant for the assessment of climate change impacts on maize production under semiarid conditions. This experiment was conducted with an overall objective to find how N fertilization and cultivar interactions along with climatic conditions determine the mineral composition and maize yield responses of four divergent maize cultivars grown under eight different fertilization levels. The results showed that element contents were significantly affected by year (Y), cultivar (C), N fertilization, and N × C interaction. The element contents of grains were mainly influenced by N rate or N × C interactions. The results showed that maize yield was significantly affected by year (Y), genotype (G), N fertilization (N), and Y × G × N interaction. These results implied that the maize yield was significantly affected by changes in genotypes and environments. Overall, our findings are a result of the interactions of genetic, environmental, and agronomic management factors. Future studies could evaluate more extreme plant densities, N fertilizer levels, and environments to further enhance our understanding of management effects on the mineral composition and maize yield in calcareous soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.