Abstract

An understanding of crop availability of livestock slurry nitrogen (N) is necessary to maximise crop N use efficiency and to minimise environmental losses. Results from field and laboratory incubation experiments suggest that first-year crop availability of slurry N comes mainly from its ammonium fraction because net mineralisation of organic N is often negligible in the short term. A two-year field experiment during 2011 and 2012 in northern Italy was undertaken with several aims: to estimate the N fertiliser value of raw dairy cow slurry, digested dairy cow slurry, and the liquid and solid fractions of the digested slurry, and to verify if applied ammonium recovery was similar both among slurries and between slurries and inorganic N fertiliser (ammonium sulphate). Different fertilisers were applied before silage maize cultivation followed by an unfertilised Italian ryegrass crop. The results showed that ammonium recovery was significantly higher in mineral-fertilised (75%) versus slurry-fertilised (30%) treatments, except in digested slurry (65%). This indicates that ammonium applied with organic materials is less efficient than when applied with mineral fertiliser. For the digested slurry and its liquid fraction, most of the applied ammonium was available to the maize during its application year (55%) due to a low carbon (C)/organic N ratio. The apparent N recovery of the raw slurry and digested slurry solid fraction increased substantially between the first (-1.4%) and second (20%) years, as these materials had high C/organic N ratios; they likely immobilised N for several months post application, producing residual effects during the Italian ryegrass and next maize crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.