Abstract
The development of deep-blue organic light-emitting diodes (OLEDs) featuring high efficiency and narrowband emission is of great importance for ultrahigh-definition displays with wide color gamut. Herein, based on the nitrogen-embedding strategy for modifying the short range charge transfer excited state energies of multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters, we introduce one or two nitrogen atoms into the central benzene ring of a versatile boron-embedded 1,3-bis(carbazol-9-yl)benzene skeleton. This approach resulted in the stabilization of the highest occupied molecular orbital energy levels and the formation of intramolecular hydrogen bonds, and thus systematic hypsochromic shifts and narrowing spectra. In toluene solution, two heterocyclic-based MR-TADF molecules, Py-BN and Pm-BN, exhibit deep-blue emissions with high photoluminescence quantum yields of 93 % and 94 %, and narrow full width at half maximum of 14 and 13 nm, respectively. A deep-blue hyperfluorescent OLED based on Py-BN exhibited a maximum external quantum efficiency of 27.7 % and desired color purity with Commission Internationale de L'Eclairage (CIE) coordinates of (0.150, 0.052). These results demonstrate the significant potential for the development of deep blue narrowband MR-TADF emitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.