Abstract

Nitrogen-doped anatase TiO2 microsheets with 65% (001) and 35% (101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, UV-visible spectroscopy, and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO2 (P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO2 microsheet surface, enhanced visible light absorption by nitrogen-doping, and surface fluorination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call