Abstract

Catalysts are a key component of polymer electrolyte membrane fuel cells (PEMFCs). In this work, nitrogen-doped three-dimensional graphene-supported platinum (Pt-3DNG) catalysts are successfully prepared and characterized. SEM and TEM images show the Pt nanoparticles are uniformly dispersed in the sheets of nitrogen-doped 3DNG. Compared with that of the commercial Pt/C catalysts, Pt-3DNG show much better oxygen reduction reaction (ORR) activity and cycling stability, and the reduction in limit current density after 1000 cycles is only about 1.6% for the Pt-3DNG catalysts, whereas 7.2% for the commercial Pt/C catalysts. The single cell using Pt-3DNG catalysts in both the anode and the cathode show a higher peak power density (21.47[Formula: see text]mW cm[Formula: see text] than that using commercial Pt/C catalysts (20.17[Formula: see text]mW cm[Formula: see text] under the same conditions. These properties make this type of catalyst suitable for the application in PEMFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.