Abstract

PtM (M = 3d transition metals) alloys are known as the promising oxygen reduction reaction catalysts and have been considered as the replacement of pure Pt catalysts for the commercialization of proton exchange membrane fuel cells. Although great progress has been made in the past three decades, the performance and durability of PtM catalysts still face stringent challenges from practical applications. Functionalization of a catalyst carbon support with nitrogen-contained groups can add charges onto its surface, which can be utilized to build a more complete ionomer/catalyst interface, to reduce the catalyst particle size, and to improve particle size distribution. Nitriding of PtNi catalysts can effectively improve the catalyst activity and stability by the modification of lattice strain. Hereby, we propose a synergistic approach of combining polybenzimidazole-grafted Vulcan XC72 carbon as the catalyst carbon support and the nitriding of PtNi to develop PtNiN/XC72-polybenzimidazole catalysts. Such PtNiN/XC72-PBI catalysts exhibit the excellent performance of fuel cell membrane electrode assembly (i.e., mass activity, 440 mA mgPt-1; electrochemical surface area, 51 m2 gPt-1; and rated power density, 836 mW cm-2) as well as promising catalyst stability. The developed PtNiN/XC72-PBI meets the US DOE 2020 targets of mass activity for the fuel cell catalysts. This work provides a novel approach and a promising pathway on the development of the catalyst using such a synergistic approach─modification of the catalyst structure by nitrogen doping and functionalization of carbon support by polybenzimidazole for both high performance and high durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.