Abstract
Photo catalytically assisted, multi–layer nitrogen doped reduced graphene oxide (ML–NrGO) is investigated as a promising charge storage layer in Al/PMMA/NrGO/SiO2/p–Si/Au structure. A considerable memory window (ΔW) of ∼3.3 V at ± 7 V sweep voltage and long data retention upto ∼ 105 s is demonstrated as an encouraging candidature for emerging memory hierarchies. The clockwise hysteresis supports the hole charge trapping mechanism in the NrGO based structure. The ML–NrGO memory devices provide the rapid programming, saturation of the program transients, store more data at less cost and reduced ballistic transport in the plane perpendicular to NrGO. The facile, solution processable, cost effective device processing and stable retention of the fabricated ML–NrGO based Al/PMMA/NrGO/SiO2/p–Si/Au flash memory structures proves to be a potential alternative for existing EEPROM based embedded applications and also for commercial scale production of flash memory based on flexible organic electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.