Abstract

High purity aligned nitrogen doped multi walled carbon nanotubes were synthesized by the catalytic chemical vapor deposition method using pyridine and Fe/Co (2:1 volume ratio) as the single C/N precursor and catalyst material. The average diameter of the synthesized tubes ranges between 29nm and 57nm and the nitrogen content of the tubes reaches a maximum of 9.2 (at.)% nitrogen. The effect of nitrogen doping on the Raman scattering of doped tubes and its correlation with X-ray photoelectron spectra (XPS) was investigated. The analysis is based on the investigation of the ID/IG (integrated area ratio), other nitrogen characteristic Raman modes and the type of nitrogen inclusion interpreted from the N 1s electron bonding energies in XPS. At doping levels higher than 5% the nitrogen inclusion takes place through another mechanism than at low nitrogen doping levels. Most significant is that pyridinic defects are relatively readily incorporated at low nitrogen doping levels while at nitrogen content higher than 5% the major incorporation mechanism is dominated by pyridinic and pyrrolic defects on an equal basis. Our study gives further insight into nitrogen doping effects and the relation between type of nitrogen inclusion and nitrogen doping levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call