Abstract

In this work, palladium and palladium-cobalt supported on nitrogen doped graphene as anode materials in direct methanol fuel cells is reported. A simple and low temperature solvothermal method is used to directly prepare nanoflower-like NG and then, Pd and PdCo nanoparticles are precipitated onto the surface of NG using a modified polyol reduction method. The synthesized electrocatalysts are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) are used to measure electrocatalytic methanol oxidation activity and the durability of electrocatalysts. The results show that PdCo/NG has better electrocatalytic activity than Pd/NG toward methanol oxidation reaction (MOR) in alkaline media that is related at the presence of cobalt atoms. In addition, chronoamperometric results indicate that PdCo/NG is more stable than commercial Pt/C for MOR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call