Abstract

The levels of KRAS G12C point mutation is recognized to be closely related to the earlier diagnosis of non-small cell lung cancer (NSCLC). Here, based on nitrogen-doped graphene quantum dots (NGQDs) and photo-induced electron/energy transfer reversible addition-fragment chain transfer (PET-RAFT) signal amplification strategy, we fabricated a novel electrochemiluminescence (ECL) biosensor for the detection of KRAS G12C mutation for the first time. NGQDs as ECL-emitting species with cathodic ECL were prepared by a simple calcination method. Firstly, KRAS G12C mutation DNA, i. e., target DNA (tDNA), was captured by specific identification with hairpin DNA (hDNA). Then, PET-RAFT was initiated by blue light, and large numbers of monomers were successfully polymerized to form controllable polymer chains. Lastly, massive NGQDs was introduced via amidation reaction with N-(3-aminopropyl)methacrylamide hydrochloride (APMA), which significantly amplified the ECL signal intensity. Under optimal conditions, this biosensor achieved a good linear relationship between ECL intensity and logarithm of the levels of KRAS G12C mutation in the range from 10 fM to 10 nM. Moreover, this strategy exhibited high selectivity and excellent applicability for KRAS G12C mutation detection in the serum samples. Therefore, this biosensor has great potential in clinical diagnosis and practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.