Abstract
Nitrogen-doped graphene-supported carbon-containing iron nitride (FeCN/NG) was synthesized by the chemical impregnation of iron and nitrogen-containing precursors in the presence of ammonia under thermal treatment. The resultant graphene-based material acted as an electrode with a much higher electrocatalytic activity in the catalysis via a 4-electron pathway in fuel cells. The results of X-ray diffraction, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy indicated that graphite oxide was successfully reduced to nitrogen-doped graphene. X-Ray absorption spectroscopy further confirmed that carbon was incorporated into iron nitride, demonstrating that Fe–N–C catalytic active sites may be responsible for the oxygen reduction reaction. To the best of our knowledge, this is the first report of the combination of N-doped graphene with non-precious metal for oxygen reduction in fuel cells, and may open up a new possibility for preparing graphene-based nanoassemblies for intensive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.