Abstract

We report an innovative strategy to prepare the porous N-doped graphene aerogel with an open structure and abundant defects by hydrothermal self-assembly of zeolitic imidazolate framework (ZIF)-8 and graphene oxide. The in-situ hydrothermal restructuring of ZIF-8 on graphene sheets plays a key role in the synthesis of the open structure and the uniform N-doping. The dissolution and restructuring of ZIF-8 on graphene oxide obviously suppress the stacking and reunion of graphene sheets to obtain the continuous macroporous structure. Moreover, the introduction of N and Zn creates the abundant N-doped sites and microporous structure. Its unique structure and composition improve the accessible surface area, the mass transfer diffusion, the dispersion and electronic structure of Pt nanoparticles, further resulting in the high catalytic performance of Pt-based catalyst for methanol oxidation reaction (MOR). Its MOR activity is about 1.8 times of commercial Pt/C, and its long cycling durability is improved by about 18.7% compared with commercial Pt/C. This work renders a promising method by utilizing ZIF-8 derivatives to synthesize the excellent N-doped carbon materials for electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.