Abstract

Owing to its unique chemical structure, natural pores, high structure defects, good surface hydrophilicity and biocompatibility, and favorable electrical conductivity, nitrogen-doped graphdiyne (NGDY) has been attracting attention in the application of electrochemical sensing. Taking advantage of these fascinating electrochemical properties, for the first time, two types of electrochemical enzymatic biosensors were fabricated for the respective detection of organophosphorus pesticides (OPs) and phenols based on the immobilization of acetylcholinesterase or tyrosinase with NGDY. Results revealed that the sensitivities of the NGDY-based enzymatic biosensors were almost twice higher than that of the matching biosensor in the absence of NGDY, proving that NGDY plays a vital role in immobilizing the enzymes and improving the performance of the fabricated biosensors. The effects of nitrogen doping on improving the biosensing performance were studied in depth. Graphitic N atoms can enhance the electrical conductivity, while imine N and pyridinic N can help to adsorb and accumulate the substance molecules to the electrode surface, all of which contribute to the significantly improved performance. Furthermore, these two types of biosensors also demonstrated excellent reproducibility, high stability, and good recovery rate in real environmental samples, which showed a valuable way for the rapid detection of OPs and phenols in the environment. With these excellent performances, it is strongly anticipated that NGDY has tremendous potential to be applied to many other biomedical and environmental fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call