Abstract

Designing a new class of non-noble metal catalysts with triiodide reduction activity and stability comparable to those of conventional Pt is extremely significant for the application of dye-sensitized solar cells (DSSCs). Here, we demonstrate newly designed counter electrode (CE) materials of onion-like nitrogen-doped carbon encapsulating metal alloys (ONC@MAs) such as FeNi3 (ONC@FeNi3) or FeCo (ONC@FeCo), by a facile and scalable pyrolysis method. The resulting composite catalysts show superior catalytic activities towards the triiodide reduction and exhibit low charge transfer resistance between the electrode surfaces and electrolytes. As a result, the DSSCs based on ONC@FeCo and ONC@FeNi3 achieve outstanding power conversion efficiencies (PCEs) of 8.26% and 8.87%, respectively, which can rival the 8.28% of Pt-based DSSC. Moreover, the excellent electrochemical stabilities for both the two catalysts also have been corroborated by electrochemical impendence spectra and cyclic voltammetry (CV). Noticeably, TEM investigation further reveals that the N-doped graphitic carbon onions exhibit the high structural stability in iodine-containing medium even subject to hundreds of CV scanning. These results make ONC@MAs the promising candidates to supersede costly Pt as efficient and stable CEs for DSSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.