Abstract

Carbon layer-encompassed nickel nanoparticles of core–shell structure (designated as Ni NPs@NC) show notable advantages toward electrochemical carbon dioxide reduction reaction (CO2RR). Core-shell structured Ni NPs@NC nanoparticles anchored on the carbon matrix have been conveniently built from a cationic metal–organic framework (CPM-72 herein) which incorporates the Ni2+ cations through the cation exchange before high-temperature pyrolysis. The designed Ni NPs@NC catalyst exhibited impressive CO2RR performance which could efficiently convert CO2 into CO (carbon monoxide). In the H-type cell, a maximal CO faradaic efficiency (FE) of 86.4% was achieved at −0.8 V (vs. RHE) with a high CO partial current density (jco) of −11.0 mA cm−2. In the flow cell device, the CO FE was further improved to 98.6% with the enhanced jco of −38.7 mA cm−2. Finally, Zn-CO2 battery test also delivered a peak power density of 0.39 mW cm−2 at 2.65 mA cm−2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call