Abstract

Carbon dots (Cdots) are an important probe for imaging and sensing applications because of their fluorescence property, good biocompatibility, and low toxicity. However, complex procedures and strong acid treatment are often required and Cdots suffer from low photoluminescence (PL) emission. Herein, a facile and general strategy using carbonization of precursors and then extraction with solvents is proposed for the preparation of nitrogen-doped Cdots (N-Cdots) with 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA), L-histidine, and L-arginine as precursor models. After they are heated, the precursors become carbonized. Nitrogen-doped Cdots are subsequently extracted into N,N'-dimethylformamide (DMF) from the carbogenic solid. A core-shell structure of Cdots with a carbon core and the oxygen-containing shell was observed. Nitrogen has different forms in N-Cdots and oxidized N-Cdots. The doped nitrogen and low oxidation level in N-Cdots improve their emission significantly. The N-Cdots show an emission with a nitrogen-content-dependent intensity and Cdot-size-dependent emission-peak wavelength. Imaging of HeLa cells, a human cervical cancer cell line, and HepG2 cells, a human hepatocellular liver carcinoma line, was observed with high resolution using N-Cdots as a probe and validates their use in imaging applications and their multicolor property in the living cell system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.