Abstract

Root activity regulates rhizosphere soil carbon (C) dynamics, thereby profoundly affecting soil C sequestration and associated climate feedback. However, whether and how rhizosphere soil organic C (SOC) sequestration responds to atmospheric N deposition remains unclear. We distinguished and quantified the direction and magnitude of soil C sequestration between the rhizosphere and bulk soil of a spruce (Picea asperata Mast.) plantation after 4-year field N additions. Moreover, the contribution of microbial necromass C to SOC accumulation under N addition was further compared between the two soil compartments, considering the crucial role of microbial necromass in soil C formation and stabilization. The results showed that although both the rhizosphere and bulk soil facilitated SOC accumulation in response to N addition, the rhizosphere exerted a greater C sequestration than that of bulk soil. Specifically, compared to the control, SOC content increased 15.03 mg/g and 4.22 mg/g in the rhizosphere and bulk soil under N addition, respectively. Further numerical model analysis showed that SOC pool in the rhizosphere increased by 33.39 % induced by N addition, which was nearly four times of that in the bulk soil (7.41 %). The contribution of increased microbial necromass C to SOC accumulation induced by N addition was significantly higher in the rhizosphere (38.76 %) than that in the bulk soil (31.31 %), which was directly related to the greater accumulation of fungal necromass C in the rhizosphere. Our findings highlighted the vital role of the rhizosphere processes in regulating soil C dynamics under elevating N deposition, and also provided a clear evidence for importance of the microbial-derived C in the SOC sequestration from the rhizosphere perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.