Abstract

Light and atmospheric nitrogen (N) deposition are among the important environmental factors influencing plant growth and forest regeneration. We used Quercus acutissima, a dominant broadleaf tree species native to the deciduous forests of Northern China, to study the combined effects of light exposure and N addition on leaf physiology and individual plant growth. In the greenhouse, we exposed Quercus acutissima seedlings to one of two light conditions (8% and 80% of full irradiation) and one of three N treatments (0, 6, and 12 g N m−2 y−1). After 87 d, we observed that nitrogen deposition had no significant effects on the seedlings regardless of light exposure. In addition, shade significantly reduced plant height, basal diameter, leaf number, total biomass, gas exchange capacity, and carbohydrate content. In contrast, however, shade significantly increased the amount of photosynthetic pigment, above-ground biomass allocation, and specific leaf area. There was also a hierarchical plasticity among the different seedling characteristics. Compared to traits of growth, biomass, biomass allocation and leaf morphology, the leaf physiology, including photosynthetic pigment, gas exchange, carbohydrate, and PUNE, is more sensitive to light conditions. Among the biomass allocation parameters, the leaf and root mass ratios had a relatively low phenotypic plasticity. The seedlings had high foliar physiological plasticity under various light conditions. Nevertheless, we recommend high irradiance to maintain vigorous seedling growth and, in turn, promote the restoration and reconstruction of vegetation.

Highlights

  • Light is one of the most important ecological factors affecting plant growth [1, 2]

  • Our results suggest that Q. acutissima acclimated to the shade mainly by modulating its leaf physiology

  • The present study showed that nitrogen load had no significant effects on Q. acutissima seedlings regardless of light conditions

Read more

Summary

Introduction

Light is one of the most important ecological factors affecting plant growth [1, 2]. It influences leaf traits, regulates plant growth, and determines plant survival [3,4,5]. Sunlight must reach the forest floor through the canopy, which limits plant growth and impedes forest regeneration [6]. Effects of light exposure and nitrogen addition on Quercus acutissima

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call