Abstract

The local and electronic structure of nitrogen-related defects in thin film of InN (0 0 0 1) has been studied using synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy. Several defect levels within the band gap and the conduction band of InN were clearly resolved in XANES spectra around the nitrogen K-edge. Theoretical analysis of XANES data includes advanced “ab initio” simulations: self-consistent full multiple scattering calculations using muffin-tin approximation, non-muffin-tin finite difference approach to study the influence of non-muffin-tin effects on XANES shape as well as advanced local density approximation scheme for optimization of initial geometry around nitrogen defects. Theoretical analysis of XANES data allows to attribute the level observed at 1.7 eV above the conduction band mimimum to antisite nitrogen and a sharp resonance at 3.2 eV above the conduction band minimum to molecular nitrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call