Abstract

Increases in the deposition of anthropogenic nitrogen (N) have been linked to several terrestrial ecological changes, including soil biogeochemistry, plant stress susceptibility, and community diversity. Recognizing the need to identify sensitive indicators of biotic response to N deposition, we empirically estimated the N critical load for changes in alpine plant community composition and compared this with the estimated critical load for soil indicators of ecological change. We also measured the degree to which alpine vegetation may serve as a sink for anthropogenic N and how much plant sequestration is related to changes in species composition. We addressed these research goals by adding 20, 40, or 60 kg N x ha(-1) x yr(-1), along with an ambient control (6 kg N x ha(-1) x yr(-1) total deposition), to a species-rich alpine dry meadow for an eight-year period. Change in plant species composition associated with the treatments occurred within three years of the initiation of the experiment and were significant at all levels of N addition. Using individual species abundance changes and ordination scores, we estimated the N critical loads (total deposition) for (1) change in individual species to be 4 kg N x ha(-1) yr(-1) and (2) for overall community change to be 10 kg N x ha(-1) x yr(-1). In contrast, increases in NO3- leaching, soil solution inorganic NO3-, and net N nitrification occurred at levels above 20 kg N x ha(-1) x yr(-1). Increases in total aboveground biomass were modest and transient, occurring in only one of the three years measured. Vegetative uptake of N increased significantly, primarily as a result of increasing tissue N concentrations and biomass increases in subdominant species. Aboveground vegetative uptake of N accounted for <40% of the N added. The results of this experiment indicate that changes in vegetation composition will precede detectable changes in more traditionally used soil indicators of ecosystem responses to N deposition and that changes in species composition are probably ongoing in alpine dry meadows of the Front Range of the Colorado Rocky Mountains. Feedbacks to soil N cycling associated with changes in litter quality and species composition may result in only short-term increases in vegetation N pools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call