Abstract

Nitrogen controls on fine root substrate quality (that is, nitrogen and carbon-fraction concentrations) were assessed using nitrogen availability gradients in the Harvard Forest chronic nitrogen addition plots, University of Wisconsin Arboretum, Blackhawk Island, Wisconsin, and New England spruce-fir transect. The 27 study sites encompassed within these four areas collectively represented a wide range of nitrogen availability (both quantity and form), soil types, species composition, aboveground net primary production, and climatic regimes. Changes in fine root substrate quality among sites were most frequently and strongly correlated with nitrate availability. For the combined data set, fine root nitrogen concentration increased (adjusted R2 = 0.46, P < 0.0001) with increasing site nitrate availability. Fine root “extractive” carbon-fraction concentrations decreased (adjusted R2 = 0.32, P < 0.0002), “acid-soluble” compounds increased (adjusted R2 = 0.35, P < 0.0001), and the “acid-insoluble” carbon fraction remained relatively high and stable (combined mean of 48.7 ± 3.1% for all sites) with increasing nitrate availability. Consequently, the ratio of acid-insoluble C–total N decreased (adjusted R2 = 0.40, P < 0.0001) along gradients of increasing nitrate availability. The coefficients of determination for significant linear regressions between site nitrate availability and fine root nitrogen and carbon-fraction concentrations were generally higher for sites within each of the four study areas. Within individual study sites, tissue substrate quality varied between roots in different soil horizons and between roots of different size classes. However, the temporal variation of fine root substrate quality indices within specific horizons was relatively low. The results of this study indicate that fine root substrate quality increases with increasing nitrogen availability and thus supports the substrate quality component of a hypothesized conceptual model of nitrogen controls on fine root dynamics that maintains that fine root production, mortality, substrate quality, and decomposition increase with nitrogen availability in forest ecosystems in a manner that is analogous to foliage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.