Abstract

Well-aligned nitrogen-doped multiwalled carbon nanotubes have been synthesized by pyrolysis of acetonitrile and ferrocene mixtures at relative low temperatures (from 500°C to 850°C), which has potential field-emission applications. The effects of chemical vapor deposition parameters such as reaction temperatures and carrier gas on the derived nanotube yield, morphology, and doped N have been systematically studied by scanning electron microscopy and transmission electron microscopy coupled with electron energy-loss spectroscopy (EELS). It is found that the nanotube yield, average length, and diameter increase with reaction temperatures. However, higher reaction temperature (above 800°C) reduces the doped-N concentration resulting in gaseous nitrogen encapsulated within nanotube cores. Using N 2 carriage gas instead of Ar promotes the formation of Y junctions at 800°C, whereas the introduction of 10% H 2 results in the promotion of uniform small-diameter nanotubes with a higher nanotube yield. Spatially resolved EELS studies reveal a higher pyridine-like N concentration in the tube core region and a lower N doping at the tube wall, which is because of dangling bonds at the open fringes in the tube inner cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call