Abstract
The provision of small amounts of glucose during fasting is known to spare body protein and to attenuate markedly the metabolic response to starvation. These actions, which are not shared by fat, are generally thought to depend on the ability of exogenous glucose to stimulate insulin secretion. To determine whether fructose, a very weak insulin secretagogue, will also conserve nitrogen and alter the response to fasting, we infused small amounts of fructose, 100 g/d (375 kcal), into 7 obese subjects during a 10-day fast: 4 received fructose days 7 to 10, and 3 received fructose days 1 to 7. Fructose virtually abolished (all P < 0.05−0.01) the fasting induced: (a) fall in glucose and insulin and rise in glucagon, (b) fall in triiodothyronine, (c) ketosis and acidosis, (d) increased ammonia excretion, (e) hyperuricemia (and hypouricosuria), and (f) fall in plasma alanine and rise in branched chain amino acids. Fructuse also significantly reduced urinary sodium loss. Moreover, fructose exerted a prominent protein-sparing action, even though plasma insulin concentrations never exceeded postabsorptive levels. Excretion of total nitrogen was reduced by 40% to 50% during periods of fructose infusion, reflecting significant suppression of both urea and ammonia generation (all P < 0.05−0.01). Most plasma glucogenic amino acids rose significantly during fructose administration. We conclude that low-dose fructose infusion essentially abolishes the entire hormone-substrate response to fasting, and spares body protein without raising insulin above postabsorptive levels. Since fructose prevented (or reversed) the fasting-induced fall in plasma glucose, while simultaneously causing glucogenic amino acids to accumulate in plasma, our data suggest that fructose spares protein during fasting by replacing endogenous amino acids as gluconeogenic substrate. Suppression of acidosis may also conserve nitrogen by inhibiting renal ammoniagenesis. Liver and kidney, rather than skeletal muscle, may represent the primary sites where fructose exerts its protein-sparing action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.