Abstract

Organic solar cells (OSCs) are one of the most promising photovoltaic technologies due to their affordability and adaptability. However, upscaling is a critical issue that hinders the commercialization of OSCs. A significant challenge is the lack of cost-effective and facile techniques to modulate the morphology of the active layers. The slow solvent evaporation leads to an unfavorable phase separation, thus resulting in a low power conversion efficiency (PCE) of organic solar modules. Here, a nitrogen-blowing assisted method is developed to fabricate a large-area organic solar module (active area = 12 cm2) utilizing high-boiling-point solvents, achieving a PCE of 15.6%. The device fabricated with a high-boiling-point solvent produces a more uniform and smoother large-area film, and the assistance of nitrogen-blowing accelerates solvent evaporation, resulting in an optimized morphology with proper phase separation and finer aggregates. Moreover, the device fabricated by the nitrogen-blowing assisted method exhibits improved exciton dissociation, balanced carrier mobility, and reduced charge recombination. This work proposes a universal and cost-effective technique for the fabrication of high-efficiency organic solar modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.