Abstract

Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

Highlights

  • Fire is a major natural disturbance factor in boreal forests, with approximately 1% of boreal forests burned annually [1]

  • The aim of this study was to examine changes in the pools, fluxes and balance of N along a 155-year fire chronosequence in sub-arctic Scots pine (Pinus sylvestris L.) stands, and to investigate how the number of microbial genes associated with N cycling are linked to N dynamics

  • This study indicates, that N fixation potentially exists in the bare soil after the forest fire, and this was manifested in the increased amount and intensity of N-fixing genes in the soil of the youngest age class

Read more

Summary

Introduction

Fire is a major natural disturbance factor in boreal forests, with approximately 1% of boreal forests burned annually [1]. The frequency of forest fires is predicted to increase due to climate change in the boreal zone [2, 3]. As the boreal forests are the second largest biome on Earth, encompassing ~30% of the global forest area [1], increases in the annual area burned could have significant implications for carbon (C) and nitrogen (N) cycles [2, 4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call