Abstract
Different activation and N-doping treatments were used to produce biochar-based fertilizers (BBFs) with increased N concentration and slow N release. Pristine biochars were produced by pyrolysis of olive tree pruning feedstock at low and high temperatures (400 and 800 °C). These biochars were activated either by ultrasonication, or oxidation with hydrogen peroxide (H2O2) or nitric acid (HNO3) to increase their N retention potential. Subsequently biochars were enriched with N with either urea or ammonium sulfate. The activation of low-temperature biochars with HNO3 was the most effective treatment leading to new surface carboxylic groups that facilitated the later enrichment with N. When treated with urea, BBFs reached 7.0 N%, whereas the H2O2 activation only allowed an increase up to 2.0 N%. The use of urea as the external N source was the most efficient for incorporating N. Urea treated biochars had a water-soluble fraction that represented up to 14.5 % of the total N. The hydrolyzable N fraction, composed by amides and simple N heterocycles originated by the N-doping treatments, and nitro groups generated from HNO3 activation, represented up to 60 % of the total N. This study relates the N chemical forms in the new BBFs to potential N availability in soil. The presence of water-soluble, hydrolyzable and non-hydrolyzable N implied that these BBFs may supply N that would be progressively available for plants, acting as slow-release fertilizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.