Abstract

Grain water relations play an important role in grain filling in maize. The study aimed to gain a clear understanding of the changes in grain dry weight and water relations in maize grains by using hybrids with contrasting nitrogen efficiencies under differing nitrogen levels. The objectives were: 1) to understand the changes in dry matter and percent moisture content (MC) during grain development in response to different nitrogen application rates and 2) to determine whether nitrogen application affects grain filling by regulating grain water relations. Two maize hybrids, high N-efficient Zhenghong 311 (ZH311) and low N-efficient Xianyu 508 (XY508), were grown in the field under four levels of N fertilizer: 0, 150, 300, and 450 kg N ha–1 during three growing seasons. Dry weight, percent MC and water content (WC) of basal–middle and apical grains were investigated. The difference in the maximum WC and filling duration of basal–middle and apical grains in maize ears resulted in a significant difference in final grain weight. Grain position markedly influenced grain drying down; specifically, the drying down rate of apical grains was faster than that of basal–middle grains. Genotype and grain position both influenced the impact of nitrogen application rate on grain filling and drying down. Nitrogen rate determined the maximum grain WC and percent MC loss rate in the middle and the late grain-filling stages, thus affecting final grain weight. The use of high N-efficient hybrids, combined with the reduction of nitrogen application rate, can coordinate basal–middle and apical grain drying down to ensure yield. This management strategy could lead to a win–win situation in which the maximum maize yield, efficient mechanical harvest and environmental safety are all achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call