Abstract

We have observed vesicles filled with heavy nitrogen gas and water vapor in three settings in the Bencubbin CB chondrite: in the mesostasis of the silicate clasts, in the mesostasis of the chondrules of an ordinary chondrite (OC) xenolith, and in grains we refer to as bubble grains, and interpret as remelted OC chondrule mesostasis. In our view, these bubbles are a local phenomenon and formed as a consequence of the impact of the OC fragment onto the Bencubbin parent body. The heavy nitrogen in the bubbles came from one or several of its carrier phases in Bencubbin, and the water came from hydrous silicates. As formulated by Meibom et al. (Meibom A., Righter K., Chabot N., Dehn G., Antignano A., McCoy T. J., Krot A. N., Zolensky M. E., Petaev M. I. and Keil K. (2005) Shock melts in QUE 94411, Hammadah al Hamra 237, and Bencubbin: remains of the missing matrix? Meteorit. Planet. Sci. 40, 1377–1391) these hydrous phases, similar to the hydrated clasts now found in CH and CB b chondrites, were probably common in the Bencubbin parent body at that time. They were later almost totally destroyed by a large scale shock event, and contributed to form the impact melt that now fills space in between the large clasts of Bencubbin. Our observations indirectly confirm this hypothesis. From our composition measurements, we infer that the silicate part of the impact melt was made in roughly equal proportions of melted phyllosilicates and melted anhydrous silicates. The oxygen isotopic composition of the impact melt is much heavier than that of the silicate clasts, probably reflecting the composition of the water at the origin of the phyllosilicates. The O isotope measurements of the OC inclusion chondrules present some features that seem to be common in OCs: a composition of the chondrule crystals slightly lighter than that of whole chondrules, and one olivine crystal with a very light composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.