Abstract

Nitrogen and sulfur co-doped TiO(2) nanosheets with exposed {001} facets (N-S-TiO(2)) were prepared by a simple mixing-calcination method using the hydrothermally prepared TiO(2) nanosheets powder as a precursor and thiourea as a dopant. The resulting samples were characterized by transmission electron microscope, X-ray diffraction, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-Vis absorption spectroscopy. The electronic properties of N,S co-doped TiO(2) were studied using the first-principle density functional theory (DFT). The photocatalytic activity of N-S-TiO(2) was evaluated by degradation of 4-chlorophenol (4-CP) aqueous solution under visible light irradiation. The production of hydroxyl radicals (˙OH) on the surface of visible-light-irradiated samples was detected by photoluminescence technique using terephthalic acid as a probe molecule. The results show that nitrogen and sulfur atoms were successfully incorporated into the lattice of TiO(2), which resulted in N-S-TiO(2) samples exhibiting stronger absorption in the UV-visible range with a red shift in the band gap transition. The first-principle DFT calculations further confirm that N and S co-dopants can induce the formation of new energy levels in the band gap, which is associated with the response of N-S-TiO(2) nanosheets to visible light irradiation. Surprisingly, pure TiO(2) nanosheets show the visible-light photocatalytic activity for the degradation of 4-CP mainly due to the substrate-surface complexation of TiO(2) and 4-CP, which results in extending absorption of titania to visible light region through ligand-to-titanium charge transfer. The N-S-TiO(2) samples studied exhibited an enhanced visible-light photocatalytic activity than pure TiO(2). Especially, the doped TiO(2) sample at the nominal weight ratio of thiourea to TiO(2) powder of 2 showed the highest photocatalytic activity, which was about twice greater than that of Degussa P25. The enhanced activity of N-S-TiO(2) can be primarily attributed to the synergetic effects of two factors including the intense absorption in the visible-light region and the exposure of highly reactive {001} facets of TiO(2) nanosheets. The former is beneficial for the photogeneration of electrons and holes participating in the photocatalytic reactions, and the latter facilitates adsorption of 4-CP molecules on the surface of TiO(2) nanosheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call