Abstract

Nitrogen and sulfur co-doped carbon dots (N,S/C-dots) with high fluorescence quantum yields (FLQY, 25%) was successfully synthesized by a one-step microwave-assisted method. In comparison with nitrogen doped C-dots (N/C-dots) prepared using the same method, the resulting N,S/C-dots featured small particle size, uniform surface state, insensitive FL properties to excitation wavelengths and environmental conditions, negligible cytotoxicity and excellent biocompatibility. Simultaneous doping of N and S effectively promoted electron-transfer and coordination interaction between N,S/C-dots and Hg(2+). Thus, when used as fluorescence probe for Hg(2+) label-free detection, the resulting N,S/C-dots showed good detection sensitivity and ion selectivity. The limit of detection was 2 μM; among 15 metal ions investigated, only Fe(3+) showed interference to the Hg(2+) detection. Fortunately, this interference could be effectively shielded using a chelating agent sodium hexametaphoshpate. The applicability of N,S/C-dots as fluorescence probe for Hg(2+) detection in lake water and tap water was demonstrated. Finally, based on its favorable features of negligible cytotoxicity and excellent biocompatibility, the N,S/C-dots were successfully applied to probe Hg(2+) in living cells, which broaden its application in biological system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.