Abstract

The coordination environment of atomically metal sites can modulate the electronic states and geometric structure of single-atom catalysts, which determine their catalytic performance. In this work, the porous carbon-supported N, P dual-coordinated Mn single-atom catalyst was successfully prepared via the phosphatization of zeolitic imidazolate frameworks and followed by pyrolysis at 900 °C. The optimal Mn1-N/P-C catalyst with atomic MnN2P structure has displayed better catalytic activity than the related catalyst with Mn-Nx structure in catalytic transfer hydrogenation of nitroarenes using formic acid as the hydrogen donor. We find that the doping of P source plays a crucial role in improving the catalytic performance, which affects the morphology and electronic properties of catalyst. This is the first Mn heterogeneous catalyst example for the reduction of nitroarenes, and it also revealed that the MnN2P configuration is a more promising alternative in heterogeneous catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.