Abstract

The effects of nitrogen and phosphorus levels on the physiological traits, yield, and seed yield of rapeseed (Brassica napus L.), were studied in a farm research project of Zanjan University. Three levels of nitrogen (0, 100, and 200 kg/ha) and three levels of phosphorus (0, 75, and 150 kg/ha) were considered. The results showed that an increase in nitrogen level caused an increase in the leaf chlorophyll content so that the application of 200 kg/ha of nitrogen increased the chlorophyll content of the leaves until the mid-grain filling stage. Nitrogen application lowered leaf stomatal conductance in the early flowering stage whereas the stomatal conductance was increased during the late flowering stage. Nitrogen application (100 and 200 kg/ha) also increased the quantum yield of photosystem II. On the other hand, with the application of 150 kg/ha and 75 kg/ha of phosphorus, the leaf stomatal conductance and the quantum yield of photosystem II in the early flowering stage increased respectively. The results showed that the application of 200 kg/ha of nitrogen and 75 kg/ha of phosphorus significantly increased seed and oil yield compared to the control. In addition, the number of siliques per plant and the weight of 1000 seeds showed an increasing trend that was affected by nitrogen and phosphorus levels. This study demonstrated that nitrogen enhanced the chlorophyll content, leaf area, and consequently, the quantum yield of photosystem II. Nitrogen also augmented the seed filling duration, seed yield, and oil yield by increasing gas exchange. As a result, the application of 100 kg/ha of nitrogen together with 75 kg/ha phosphorus showed the greatest effect on the qualitative and quantitative yield of rapeseed. However, the application of 200 kg/ha of nitrogen alone or in combination with different levels of phosphorus did not significantly increase many of the studied traits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.